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Quantum Dimer Models
• Simple local models describing strongly frustrated and ring exchange

quantum spin systems with a large spin gap and no long range spin order

• They typically exhibit spin gap phases with different types of valence bond

crystal orders

• QDM have special solvable points, the Rokhsar-Kivelson (RK) point, where

the exact ground state wave function has the short range RVB form

|ΨRVB〉 =
∑
{C}

|C〉, {C} = all dimer coverings of the lattice

• On bipartite lattices, the RK points are quantum (multi) critical points

described by an effective field theory with z = 2, exponents that depend

continuously on the coupling constant of a strictly marginal operator (a

“Luttinger parameter"), and have massless deconfined spinons

• On non-bipartite lattices QDMs have topological Z2 deconfined phases with

massive spinons and a topological 4-fold ground state degeneracy on a torus
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Questions
• Is the connection with 2D classical systems peculiar to the QDM? Conformal

invariance in 2D? Central charge?

• Is this quantum phase transition generic?, i.e. is it robust to local short range

perturbations of the QDM?

• Why this is not a first order transition (as naively expected)?

• QDM models are known to have columnar, plaquette and “staggered" phases. These

are simple commensurate phases. Are there also incommensurate phases? Devil

staircases? How are they related to this QCP? Global phase diagram?

• What is the effective field theory of these phases and of these quantum phase

transitions? Is this a new universality class?

• Are there quantum disordered phases?. How are they related to these QCPs?

• Models with ordered, disordered phases and quantum critical points? Quantum

vertex models! Phase diagram and quantum critical behavior?

• What’s next? Other universality classes? Loops? c < 1? Non-Abelian Phases? See

Paul Fendley’s talk!
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The Quantum Dimer Model

HRK =
∑

i

(vVi − tFi), Rokhsar and Kivelson (1988)

Vi =
∣∣ 〉〈 ∣∣+ ∣∣ 〉〈 ∣∣ Fi =

∣∣ 〉〈 ∣∣+ ∣∣ 〉〈 ∣∣
Here each bar represents a spin singlet bond.

For t = v ⇒ HRK =
∑

i Q†
iQi, with Qi =

(
1 −1
−1 1

)
.

The ground state wave function |Ψ0〉 has E = 0

|Ψ0〉 =
1√
Zcl

∑
C

|C〉 ,

where Zcl is the sum over all dimer configurations

Equal-time correlators in the quantum dimer model at the RK point are given by

correlators of the classical dimer model.

This is a critical system on a square lattice (Kivelson and Rokhsar; Fradkin and

Kivelson), but non-critical, deconfined, on a triangular lattice (Moessner and

Sondhi, 1998).
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Schematic Phase Diagram of Generalized QDMs

columnar plaquette incommensurate

tilt
max

RK point
0
−∞ 1 ∞

staggered

v/t

Square lattice: Sachdev and Jalabert (1990)
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Effective Field Theories of QDMs
QDMs are gauge theories and are dual to height models, (Fradkin and Kivelson, 1988)

Gauge theory picture:

• an electric field γ − 1 is assigned to a link occupied by a dimer and an electric field

−1 if unoccupied (γ = coordination number of the lattice).

• Electric field configurations satisfy a lattice version of Gauss’ Law:

∀ lattice sites r ⇒ ∇ · E(r) = 0

This the hard dimer constraint: every site belongs to one and only one dimer

• Holons and spinons are violations of the hard dimer constraint, and correspond to

gauge charges

• The coarse grained effective continuum Hamiltonian at the RK point

H =

Z
d2x

»
κ2

2
(∇× E)2 +

1

2
(∇× A)2

–

Physical states obey Gauss’ Law : ∇ · E(r) |Phys〉 = 0

[Ej(x), Ak(y)] = i δjkδ2(x − y)
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Dimers, heights and continuum limit
• The QDM can be mapped to a height model

• The heights live on the dual lattice, and going around a vertex of the even
sublattice clockwise, the height changes by +3 if a dimer is present, and by
−1 if there is no dimer.

0 0 0 03 −1 −1 −1

2 2 −2 −21 1 1 −3

h = 3/2 h = 1/2 h = −1/2 h = −3/2

• Plaquette flip changes the height of that plaquette by ±4, and the average
height of the surrounding sites by ±1.

• Equivalent configurations: h ∼= h + 4.

• Columnar phase, 〈h〉 �= 0
Staggered phase, 〈∂h〉 �= 0

• Continuum limit: h ∼= 4ϕ(x)
Compactification Radius: ϕ(x) ∼= ϕ(x) + 1.
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The Quantum Lifshitz model
• Duality ⇔ Solving the Gauss Law constraint

∇ · E = 0 ⇒ E = ∇× ϕ

• Canonical Conjugate Momentum

Π(r) = B(r) = ∇× A(r) , [ϕ(r), Π(r′)] = iδ(r − r′)

• Hamiltonian:

H =
∫

d2x

[
1
2
Π2 +

κ2

2
(∇2ϕ

)2]
This is the Quantum Lifshitz Model. (Henley; Moessner, Sondhi and Fradkin)

• Action in imaginary time τ :

S =
∫

d2x

∫
dτ

[
1
2

(∂τϕ)2 +
κ2

2
(∇2ϕ

)2]
Same as the free energy of smectic layers in 3D at the Lifshitz transition.

(Grintsein 1982).
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Ground State Wave Function and 2D Classical Critical
Phenomena

• Schrödinger picture ⇒ Π = −iδ/δϕ.∫
d2�x

[
−1

2

( δ

δϕ

)2

+
κ2

2
(∇2ϕ)2

]
Ψ[ϕ] = EΨ[ϕ]

• The Hamiltonian has the form

H =
∫

d2x Q†(x)Q(x)

Q(x) ≡ 1√
2

(
δ

δϕ
+ κ∇2ϕ

)
Q†(x) ≡ 1√

2

(
− δ

δϕ
+ κ∇2ϕ

)
• Ground state wave-function, Ψ0[ϕ]

Q(�x)Ψ0[ϕ] = 0 ⇒ Ψ0[ϕ] ∝ e
−κ

2

∫
d2x (∇ϕ(x))2

‖Ψ0‖2 =
∫

Dϕ e
−κ

∫
d2x (∇ϕ(x))2
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Mapping to a 2D c = 1 Euclidean CFT
• The probability for a configuration |ϕ〉 is the Gibbs weight of a 2D classical

Gaussian model, a Euclidean 2D free massless scalar field.

• The equal-time expectation value for operators in the quantum Lifshitz

model are given by correlators of the massless free boson conformal field

theory with central charge c = 1. Time-dependent correlators exhibit

powerlaw behavior with dynamical exponent z = 2.

• Matching the correlation functions of the RK and Lifshitz models, one finds

κ = 1/2π.

• Adding the term (∇ϕ)2 with positive (negative) coefficient is a relevant

perturbation which drives the system into the columnar (staggered) phase.

(More on this below.)
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The quantum eight-vertex model

a a b b c c d d

• Quantum dynamics: plaquettes are allowed to be flipped.

• The potential energy of a plaquette depends on the four vertices at its corners.

• At the RK point, H is of the form (with Qi = Q†
i ∝ Q2

i )

Hq8v =
X

i

Qi sum over plaquettes {i}

Qi =

0
@cñc−ncdñd−nd −1

−1 cñc−ncdñd−nd

1
A ,

8<
:

nc # of c-vertices in i

ñc # of c-vertices in i after the flip
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• Example, consider the plaquettes P1 =
d c

c d

←→
b b

b b

= P2.

⇒
 1

c2d2 −1

−1 c2d2

 c2d2
P1

P2

 = 0

• Hq8v has an exact E = 0 ground state, |Ψ0〉, the Baxter wave function.

Its norm is the partition function of the 2D classical Baxter model.

• Amplitude for a state with Nc c-vertices and Nd d-vertices:

Ψ0[Nc, Nd] =
cNcdNd√
Zcl(c2, d2)
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Phase diagram

c2

d2

6-vertex
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ve

rt
ex
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2

Kitaev

KT

KT

Ordered
Broken Z2

Confining

Ordered
Broken Z2

Confining

Quantum Disordered
Unbroken Z2

Deconfining
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Phases and Critical Behavior
•

Regions II & III are ordered phases (“DDW")

with broken Z2 symmetry. The (local) polarization oper-

ator 〈τ(A)τ(B)〉 is non-vanishing.

The energy for violating the constraint at two points at a

distance R costs an energy σR ⇒ confinement.

• Region I: Quantum disordered phase. No long-range order. The dual order
parameters have a non-zero expectation value. The state exhibits topological
order and deconfinement.

• Quantum critical behavior: We can use the quantum Lifshitz model at the
critical lines. Using Baxter’s result for the correlation length and the scaling
exponent for the energy operator x = 1/2πκ

κ−1 = 8 cot−1(cd) for |c2 − d2| = 2

κ−1 = 8 cot−1

(√
4
c4

− 1

)
for 0 < c2 ≤ 2 , d = 0
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Is the effective field theory near the RK QCP sufficient?

L =
1
2
(∂τh)2 +

1
2
ρ2(∇h)2 +

1
2
ρ4(∇2h)2 + λ cos(2πh)

Henley 1997, Moessner, Sondhi, Fradkin 2002

• It is rotationally invariant and does not depend on the symmetries of the

underlying lattice.

• ρ2 changes sign at the RK point where it vanishes.

• λ keeps track of the discreteness of the microscopic heights

• ρ4 = κ2 is non universal. Square lattice, ρ4 = (π/32)2; Honeycomb lattice,

ρ4 = (π/18)2.

• Compactification Radius: minimum shift of heights describing the same

dimer configuration. R = 3, 4 (honeycomb ,square)
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Life Outside the RK Point
• The QDM shows continuous quantum phase transition from zero tilt states

discontinuously to maximally tilted states, e.g. plaquette to staggered.

• Are there less commensurate or even incommensurate phases in generalized

QDMs? Are they pinned or sliding?

• Why are these transitions not first order?

• The transition between the plaquette and staggered phases is unusual.

– The plaquette order parameter vanishes continuously but the staggered

order parameter appears in full strength.

– Two diverging length scales on the plaquette side: χ ∼ |v − t|−1/2 and

χc ∼ λ−1/2χθ
c , θ = 6, 5/2 (square and honeycomb).

• On bipartite lattices only highly commensurate ordered states (and critical

points) are allowed in the QDM.

• On non-bipartite lattices, and in the eight vertex model, quantum disordered

phases appear, and are continuously connected to the RK QCP.
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Mapping for Dimer Density Operators

• Dimer density operators for the honeycomb lattice:

n1 − 1

3
=

1

3
∂xh +

1

2
[exp(2πih/3) exp(4πix/3) + h.c.]

n2 − 1

3
=

1

3
(−1

2
∂x +

√
3

2
∂y)h +

1

2
[exp(2πih/3) exp(4πix/3 + 4πi/3) + h.c.]

n3 − 1

3
=

1

3
(−1

2
∂x −

√
3

2
∂y)h +

1

2
[exp(2πih/3) exp(4πix/3 − 4πi/3) + h.c.]

• Square Lattice:

nx − 1

4
=

1

4
(−1)x+y∂yh +

1

2
[(−1)x exp(πih/2) + h.c.]

ny − 1

4
=

1

4
(−1)x+y+1∂xh +

1

2
[(−1)y exp(πih/2 + πi/2) + h.c.]
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Effective Field Theory a Honeycomb Lattice

• For the honeycomb lattice, the heights live on the (dual) triangular lattice,

and take the values 0, 1 and 2 modulo 3 on the three sublattices of the

triangular lattice.

• To be a symmetry, rotations by π/3 and inversion require h → −h.

• The effective Lagrangian must include the relevant cubic perturbation

L3 = g3(∂xh)(
1
2
∂xh −

√
3

2
∂yh)(

1
2
∂xh +

√
3

2
∂yh)

and the marginal quartic perturbation,

L4 = g4 [∇h · ∇h]2 .

• If g3 �= 0, the relevant perturbation takes over drives the transition first order

and the state has maximal tilt.
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Stability of the RK Point at g3 = 0

• RG flow for g3 = 0:

dλ

dt
= −

(
π

2ρ
1/2
4

− 2

)
λ

dg4

dt
= − 9

4πρ
3/2
4

g2
4 ,

• g4 > 0 ⇒ λ irrelevant and g4 marginally irrelevant

• logarithmic corrections corrections to scaling

• finite renormalizations of ρ4

• The multicritical RK point is stable on a surface of codimension 2

(ρeff
4 ≤ π2/16).
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The Titled Phase
• For g4 large enough, the tilt is not maximal. For g3 �= 0 the direction of the

tilt depends on the sign of g3.

• Small fluctuations in the weakly tilted state (g3 < 0, tilt along the x axis,
|g3| small)

h(r, τ) = C · r + δh(r, τ), C = Cex

δL =
1
2
(∂τδh)2 +

ρ4

2
(∇2δh)2 +

v2
l

2
(∂xδh)2 +

v2
t

2
(∂yδh)2

• |ρ2| < g2
3/g4 ⇒ vt ≈ vl; there is a single correlation length ξ−1 = vl/

√
ρ4.

• New Bragg peaks in the dimer density structure factor

– commensurate Bragg peak at the wavevector of the maximally
“staggered" state located at the origin

– incommensurate peaks displaced from the wavevector of the
columnar/plaquette pattern, (4π/3, 0), by an amount proportional to C.

• The existence of gapless modes has important implications: test monomers
(spinons) interact through a logarithmic potential.
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Incommensurate Locked Crystals: The Devil’s Staircase
• We ignored the possibility of the height locking into tilted configurations.

• The height and the lattice points together define a 3D lattice Γ = {(h,x)},

the simple cubic lattice with the [111] direction measuring height.

• General lock-in potential

Vlock(h,x) =
∑
{G}

VG eiGhh+Gx·x, G ∈ Γ∗

• Tilt commensurate with any of the {G}: Gaussian fluctuations about a

given tilted state lead to locking at any point in the tilted phase. The ground

state is a VBC with a gapped spectrum.

• Incommensurate tilts: it depends upon the strength of Vlock relative to the

remaining quantum fluctuations.
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Strong fluctuations or Weak Locking
Near the RK point, ρ2 = 0 and g3 small,

• Higher order commensuration to lock-in |G| ∼ 1/C

• Locking potentials get weak

• Locking operators are more irrelevant

• V eff
lock → 0, the gap ∆ → 0 (and range of the commensurate phases) as

C → 0

∆ ∼ Ca/(ρ4C2
, ξ ∼ 1

C
, ξc ∼ ξa′ξ2/ρ4

• Close to the RK point even the commensurate phases are essentially gapless!

• Close to the RK point, the ground state is an incommensurate VBC with a

Bragg peak at the incommensurate wavevector but with a gapless (phason)

spectrum, a“photon" ⇒ Deconfinement
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Weak fluctuations or Strong Locking
• Ground states‘ form a Devil’s Staircase

• Aubry’s “breaking of analyticity” transition beyond which

– the incommensurate ground states are pinned,

– their low lying excitations are localized and gapless,

– the incommensurate ground states occupy a set of measure zero of the

phase diagram.

• Cantor deconfinement!
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Effective Theory of the Square Lattice
Generic case: (a) allow ρ4 to vary, (b) include the quadratic and strictly marginal
term,

Lm =
1
2
ρ̃4

[
(∂2

xh)2 + (∂2
yh)2

]
,

and (c) include the interactions

Lint = g4 [∇h · ∇h])2 + g̃4

[
(∂xh)4 + (∂yh)4

]2
.

• Now we have a 2D surface of fixed points

• No cubic invariant is allowed; continuous transition in mean field theory.

• RG flow around the line with ρ̃4 = 0:

dλ

dt
= −

(
π

2ρ
1/2
4

− 2

)
λ

dg4

dt
= − 9

4π(ρ4)3/2
(g2

4 + g4g̃4 +
1
4
g̃2
4)

dg̃4

dt
= − 9

4π(ρ4)3/2
(
2
3
g4g̃4 +

1
2
g̃2
4)
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• The flows in the (g4, g̃4) plane are attracted to the origin only along the

positive g4 axis

• Generically the flows run away to the region where the action is unstable at

quartic order in gradients.

• Fluctuation-driven first order transition!

• The RK point behavior requires a further fine tuning, g̃4 = 0
multicritical surface of codimension two.

• Runaway flows: the pattern of symmetry breaking is indicated by the initial

sign of g̃4 and depending on that there are four states with the tilt either

aligned or at angle π/4 to the lattice axes. All of them exhibit a modulation

of the dimer density at wavevector (π, π).

• Tilted Phase: we need the reciprocal lattice vectors of the diamond lattice,

with the direction [100] measuring the height. Bragg peaks at (π, π), (π, 0)
and (0, π). Devil’s staircase.
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Conclusions
• We showed that the Quantum Lifshitz Model describes the universality class

of Quantum Dimer Models, the Quantum Eight Vertex Model and their

generalizations

• These are multicritical points with dynamic critical exponent z = 2 and

codimension 2, and are ultra-deconfined.

• We showed that these (multi)critical points describe phase transitions

between confining valence bond crystalline states with different tilts, and

between these ordered phases and topological (spin liquid) deconfined

phases.

• We showed on the effective field theory in the vicinity of the (multi)critical

point admits additional operators (not included in the Quantum Lifshitz

Model) which either make the transition first order or give rise to a complex

sequence of commensurate and incommensurate phases.
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